Devoir en temps libre N^o4

A remettre le mercredi 1er décembre 2004

On prendra bien soin de préciser toute notation non donnée dans l'énoncé. Toute affirmation devra être justifiée et on hésitera pas à faire référence aux propriétés utilisées.

Théorème de Césaro

- Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de \mathbb{K} convergente vers $l\in\mathbb{K}$. 1) On pose pour tout $n\in\mathbb{N}^*$, $v_n=\frac{u_1+u_2+\ldots+u_n}{n}$.
- **a.** On suppose l=0. Soit $n_0 \in \mathbb{N}$ et $\varepsilon > 0$ tel que pour tout $n \geqslant n_0$, $|u_n| \leqslant \frac{\varepsilon}{2}$. Montrer que, pour tout $n \ge n_0$, on a

$$|v_n| \leqslant \frac{\varepsilon}{2} + \frac{\sum_{p=1}^{n_0} |u_p|}{n}$$

- En déduire que $\lim_{n\to+\infty} v_n = l = 0$. **b**. En déduire que $\lim_{n\to+\infty} v_n = l$.
- 2) Soit $(\lambda_n)_{n\in\mathbb{N}^*}$ une suite de \mathbb{R}_+ telle que $\lim_{N\to+\infty}\sum_{n=1}^N\lambda_n=+\infty$. On pose pour n assez grand

$$v_n = \frac{\sum_{p=1}^n \lambda_p u_p}{\sum_{p=1}^n \lambda_p}$$

a. On suppose l=0. Soit $n_0 \in \mathbb{N}$ et $\varepsilon > 0$ tel que pour tout $n \geqslant n_0, |u_n| \leqslant \frac{\varepsilon}{2}$. Montrer que, pour tout $n \ge n_0$, on a

$$|v_n| \leqslant \frac{\varepsilon}{2} + \frac{\sum_{p=1}^{n_0} \lambda_p |u_p|}{\sum_{p=1}^n \lambda_p}$$

En déduire que $\lim_{n\to+\infty} v_n = l = 0$.

- **b.** En déduire que $\lim_{n\to+\infty}v_n=l$. 3) Etendre le résultat de la question 2)b. au cas où $\mathbb{K}=\mathbb{R}$ et $l=\pm\infty$. 4) On considère $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de \mathbb{K} convergentes respectivement vers a et b. Déterminer :

$$\lim_{n \to +\infty} \frac{\sum_{k=0}^{n} a_k b_{n-k}}{n+1}$$

5) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{C} convergente vers l. Que dire de la suite $w_n = \frac{1}{2^n} \sum_{k=0}^n C_n^k u_k$ $(n \in \mathbb{N})$? (on s'inspirera d'une méthode proche du théorème de Césaro)