Devoir en temps libre N^o3

A remettre le vendredi 5 novembre 2004

Il est demandé de ne pas recopier l'énoncé. Il n'est pas nécessaire de rédiger les questions 1) à 3) de la première partie du premier problème. Il en va de même de la partie V du second problème.

On prendra bien soin de préciser toute notation non donnée dans l'énoncé. Toute affirmation devra être justifiée et on hésitera pas à faire référence aux propriétés utilisées.

On laissera une marge à gauche.

Enfin, les solutions doivent être rédigées et le formalisme utilisé avec parcimonie.

Problème 1: indicatrice d'Euler

Pour tout $n \in \mathbb{N}^*$, on note $\varphi(n)$ le nombre d'entiers $k \in [1, n]$ tel que $\operatorname{pgcd}(k, n) = 1$ (c'est aussi le nombre de $k \in [0, n-1]$ tel que $\operatorname{pgcd}(k, n) = 1$).

I. Première partie.

Soit G un groupe dont la loi est notée multiplicativement. On suppose G cyclique d'ordre $n \ge 1$ engendré par a.

- 1) Soit $1 \leq k \leq n$. Montrer l'équivalence des deux conditions suivantes :
- (i) a^k engendre G.
- (ii) k et n sont premiers entre eux.

En déduire que tout groupe cyclique d'ordre n admet $\varphi(n)$ générateurs.

- 2) Soit d un diviseur de n. Montrer que $a^{\frac{n}{d}}$ est d'ordre d.
- 3) Soit $p \in \mathbb{Z}$. Montrer que l'ordre de a^p est $\frac{n}{\operatorname{pgcd}(n,p)}$.

Si d est un diviseur de n, on note H_d le sous-groupe engendré par $a^{\frac{n}{d}}$.

- 4) Soit H' un sous-groupe de G d'ordre d. Montrer que $H' = H_d$. En déduire que pour tout diviseur d de n, G possède un unique sous-groupe d'ordre d.
- 5) Soit $b \in G$, $d \in \mathbb{N}$. Montrer que b engendre H_d si et seulement si b est d'ordre d. Combien H_d a t-il de générateurs?
 - **6)** Conclure que

$$n = \sum_{d|n} \varphi(d)$$

II. Deuxième partie.

1) Soit m et n deux entiers premiers entre eux. Soit $G = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ muni de la

structure de groupe produit : si $(a, b, c, d) \in \mathbb{Z}^4$,

$$(\overline{a}, \dot{b}) + (\overline{c}, \dot{d}) = (\overline{a+b}, c + d),$$

la classe de $x \in \mathbb{Z}$ modulo m (resp. n) étant noté \overline{x} (resp. \dot{x}).

- **a.** Quel est l'ordre de $a=(\overline{1},\overline{1})$ dans le groupe (G,+). En déduire que a engendre G. À quel groupe simple est isomorphe G?
- **b.** Soit $(k, l) \in \mathbb{Z}^2$. On suppose que k est premier avec m, l premier avec n. Montrer que (\overline{k}, \dot{l}) est d'ordre mn.
- **c.** Soit $(k,l) \in \mathbb{Z}^2$. On suppose que k n'est pas premier avec m. Montrer que $(\overline{k}, \overline{l})$ a un ordre strictement inférieur à mn.

On montrerait qu'il en va de même si l n'est pas premier avec n.

- **d.** Conclure que $\varphi(mn) = \varphi(m)\varphi(n)$.
- 2) Soit p un nombre premier.
 - **a.** Calculer $\varphi(p)$.
 - **b.** Soit $\alpha \in \mathbb{N}^*$. Dénombrer les multiples de p dans $[1, p^{\alpha}]$. En déduire $\varphi(p^{\alpha})$.
- 3) Soit $n \in \mathbb{N}^*$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ sa décomposition en facteurs premiers (les p_i sont premiers deux à deux distincts). Montrer que

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_r}\right)$$

<u>Problème 2</u>: sous-groupes de \mathbb{R}

Dans ce problème, U désigne l'ensemble des complexes de module 1 et si $n \in \mathbb{N}^*$,

$$U_n = \{ z \in U, \ z^n = 1 \}$$

On admettra que π est irrationnel.

- **I.** Soient H un sous-groupe de $(\mathbb{R}, +)$ distinct de $\{0\}$ et $H_+ = H \cap \mathbb{R}_+^*$.
 - 1) Montrer que H_+ est non vide.
 - 2) On suppose que H_+ possède un plus petit élément a. Montrer que $H=a\mathbb{Z}$
- 3) On suppose que H_+ ne possède pas de plus petit élément. Montrer que inf $H_+ = 0$ et en déduire que H est dense dans \mathbb{R} .
 - 4) Donner un exemple de sous-groupe de \mathbb{R} dense dans \mathbb{R} et distinct de \mathbb{R} .
- II. Soient a > 0 et b > 0. On pose $H = a\mathbb{Z} + b\mathbb{Z}$.
 - 1) On suppose que $\frac{a}{b} = \frac{n}{p}$ avec $(n, p) \in \mathbb{N}^{*2}$ et $\operatorname{pgcd}(n, p) = 1$. Montrer que $H = \frac{a}{n}\mathbb{Z} = \frac{b}{p}\mathbb{Z}$.
 - 2) On suppose que $\frac{a}{b} \notin \mathbb{Q}$. Montrer alors que H est dense dans \mathbb{R} .
- III. Une partie B du cercle trigonométrique U est dite dense dans U si : pour tout $z \in U$ et tout $\varepsilon > 0$, il existe $b \in B$ tel que $|z b| \le \varepsilon$. On admettra que pour tout $\alpha \in \mathbb{R}$, $|\sin \alpha| \le |\alpha|$.
 - 1) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a $|e^{ix} e^{iy}| \leq |x-y|$.
 - 2) Soit A une partie dense de \mathbb{R} . Montrer que e^{iA} est dense dans U.
- 3) Montrer que $e^{i\pi\mathbb{Q}} = \{e^{i\pi q} \in U, q \in \mathbb{Q}\}$ est un sous-groupe dense de U de cardinal infinitel que tout élément est d'ordre fini.
- **IV.** Soient a > 0, $G = e^{ia\mathbb{Z}}$.

- 1) On suppose que $\frac{a}{\pi} \in \mathbb{Q}$ et on prend $(n,p) \in \mathbb{N}^{*2}$ tel que $\frac{a}{2\pi} = \frac{n}{p}$ et $\operatorname{pgcd}(n,p) = 1$. Montrer que $G = U_p$.
 - 2) On suppose que $\frac{a}{\pi} \notin \mathbb{Q}$. Montrer que G est dense dans U.
- 3) Montrer que $(\cos n)_{n\in\mathbb{Z}}$ est dense dans [-1.1] (i.e. pour tout $x\in[-1,1]$ et tout $\varepsilon>0$, il existe $n\in\mathbb{Z}$ tel que $|\cos n-x|\leqslant\varepsilon$). Même question avec $(\sin n)_{n\in\mathbb{Z}}$.
- 4) Démontrer que si $A \subset [-1,1]$ est dense dans [-1,1], pour toute partie F finie, $A \setminus F$ est encore dense dans [-1,1].
 - 5) Déduire de la question précédente que la suite $(\sin n)_{n\in\mathbb{N}}$ est dense dans [-1,1].
- **V.** Soient G un sous-groupe de \mathbb{C}^* de cardinal n. Prouver que $G = U_n$.

Problème 3 : théorème de Wilson

- 1) Soit K un corps fini commutatif. Montrer que $\prod_{x \in K^*} x = -1$.
- 2) Soit p un nombre premier. Montrer que $(p-1)! \equiv -1 \pmod{p}$.
- 3) Soit $p \ge 5$ un nombre premier et $N \in \mathbb{N}$ défini par :

$$\sum_{k=1}^{p-1} \frac{1}{k^2} = \frac{N}{(p-1)!^2}$$

Montrer que p divise N.