Devoir surveillé $N^o 11$

Mercredi 8 juin 2005 - Durée : 4 heures -

Les deux problèmes sont totalement indépendants.

Il est demandé de porter un grand soin à la rédaction. Seules les conclusions et les résultats mis en valeur seront pris en compte.

Problème 1:

Soit $n \ge 1$ une entier naturel et $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$. On note $D : y \in E \longmapsto y' \in E$, l'opérateur de dérivation sur le \mathbb{C} -espace vectoriel E.

- 1) Soit $\lambda \in \mathbb{C}$. Préciser $\ker(D \lambda I_E)$. Quelle est sa dimension?
- 2) Soit $\lambda \in \mathbb{C}$ et $p \geqslant 1$ et $y \in E$.
- **a.** Démontrer que $y \in \ker(D \lambda I_E)^p$ si, et seulement si, y s'écrit $x \longmapsto e^{\lambda x} P(x)$ avec $P \in \mathbb{C}[X]$ et deg $P \leq p-1$ (on posera $z(x) = e^{-\lambda x} y(x)$).
 - **b.** Quelle est la dimension de $\ker(D \lambda I_E)^p$?
 - 3) On considère l'équation différentielle linéaire scalaire

$$(\mathcal{E}) \ y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0.$$

où $(a_0, a_1, \ldots, a_{n-1}) \in \mathbb{C}^n$. On note S l'ensemble des solutions de (\mathcal{E}) et on appelle polynôme caractéristique associée à (\mathcal{E}) le polynôme

$$Q = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}.$$

a. Exprimer S en fonction de Q et D.

On suppose que $Q = (X - \lambda_1)^{p_1} \cdots (X - \lambda_r)^{p_r}$ avec les λ_i deux à deux distincts et les $p_i \in \mathbb{N}^*$.

b. En déduire que $y \in S$ si, et seulement si, il existe $P_1, \ldots, P_r \in \mathbb{C}[X]$ tels que deg $P_i < p_i$ pour tout $i \in [1, r]$ et

$$\forall x \in \mathbb{R}, \ y(x) = e^{\lambda_1 x} P_1(x) + \dots + e^{\lambda_r x} P_r(x).$$

- **c.** Justifier pour $y \in E$ l'unicité de $P_1, \dots P_r$ introduits à la question précédente.
- \mathbf{d} . Quelle est la dimension de S?
- 4) Soit F un sous-espace de E de dimension finie n stable par dérivation (si $f \in F$, $f' \in F$). Démontrer qu'il existe a_0, \ldots, a_{n-1} dans \mathbb{C} tels que F soit l'ensemble des solutions de l'équation différentielle linéaire scalaire

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0.$$

5) Décrire tous les sous-espaces de E, de dimension finie, stable par dérivation.

Problème 2:

Dans tout le problème, n est un entier naturel non nul, $(y_i)_{0 \le i \le n}$ une suite finie de n+1nombres réels; l'objet du problème est de déterminer, pour tout entier naturel k, les polynômes de degré inférieur ou égal àk, tels que le réel $\Delta_k(P)$ défini par la relation suivante :

$$\Delta_k(P) = \sum_{i=0}^n (y_i - P(i))^2$$
 soit minimal.

Pour
$$0 \le i, j \le n$$
, on note $\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$

Première partie : l'application Φ_k

Pour tout entier naturel k, on considère :

$$\Phi_k : p \in \mathbb{R}_k[X] \longmapsto \begin{pmatrix} P(0) \\ P(1) \\ \vdots \\ P(n) \end{pmatrix} \in \mathbb{R}^{n+1}$$

Il est admis que cette application est linéaire.

- 1) Déterminer le noyau de l'application Φ_k ; préciser sa dimension et établir l'expression des polynômes du noyau lorsque celui-ci n'est pas réduit à $\{0\}$.
- 2) Étudier le rang de Φ_k . Pour quelles valeurs de l'entier k est-elle surjective? Pour quelle valeur de l'entier k est-elle un isomorphisme?

II. Deuxième partie : étude préliminaire

Montrer à l'aide des questions précédentes l'existence et l'unicité d'un polynôme de $\mathbb{R}_n[X]$, tel que pour tout i dans $\{0,1,\ldots,n\}$ on ait $Y(i)=y_i$

- Cette notation du polynôme Y associé à la suite $(y_i)_{0 \le i \le n}$ est conservée dans la suite. 2) On considère (l_0, \ldots, l_n) la base canonique de \mathbb{R}^{n+1} , $l_p = (\delta_{ip})_{0 \le i \le n}$. Démontrer l'existence et l'unicité d'une base $\mathcal{L} = (L_0, L_1, \dots, L_n)$ de $\mathbb{R}_n[X]$ telle que $L_i(j) = \delta_{ij}$ pour tout $0 \le i, j \le n$. Quelles sont les coordonnées d'un polynôme quelconque de $\mathbb{R}_n[X]$ dans la base \mathcal{L} ? du polynôme Y dans la base \mathcal{L} ?
- 3) Soit k un entier supérieur ou égal à n; déterminer la valeur du minimum m_k du réel $\Delta_k(P)$ défini par la relation

$$\Delta_k(P) = \sum_{i=0}^{n} (y_i - P(i))^2$$

où P est un polynôme de $\mathbb{R}_k[X]$. Quels sont les polynômes P de $\mathbb{R}_n[X]$ pour lesquels l'expression $\Delta_k(P)$ est nulle?

Dans toute la suite du problème, l'entier k est supposé inférieur ou égal à n.

III. Troisième partie : interprétation de m_k pour $k \leq n$

1) Prouver l'existence et l'unicité dans $\mathbb{R}_n[X]$ d'un produit scalaire noté (.|.) tel que la base \mathcal{L} définie dans la partie précédente soit orthonormale. Préciser pour P et Q dans $\mathbb{R}_n[X]$ la valeur de (P|Q).

On rappelle que
$$\sum_{n=1}^{n} p^2 = \frac{n(n+1)(2n+1)}{6}$$
.

2) Calculer (1|1), (1|X) et $(1|X^2)$.

Dans tout ce qui suit $\mathbb{R}_n[X]$ est muni de ce produit scalaire et on définit la norme d'un polynôme P de $\mathbb{R}_n[X]$ par :

$$||P|| = \sqrt{(P|P)}$$

3) Étant donnée une suite $(y_i)_{0 \le i \le n}$, soit Y le polynôme de $\mathbb{R}_n[X]$ associé à cette suite (cf. II.1)). Déduire des conventions précédentes que

$$\Delta_k(P) = ||Y - P||^2$$

Démontrer l'existence et l'unicité d'un polynôme P_k de $\mathbb{R}_k[X]$ pour lequel le réel $\Delta_k(P)$ est égal à son minimum m_k :

$$m_k = ||Y - P_k||^2$$

Définir le polynôme P_k au moyen de Y et de $\mathbb{R}_k[X]$.

Que dire du polynôme $Y - P_k$ et du sous-espace vectoriel $\mathbb{R}_k[X]$? Faire un croquis.

- 4) a. On suppose seulement dans cette question que k=0. Déterminer, pour un polynôme Y associé à $(y_i)_{0 \le i \le n}$, les expressions de P_0 et m_0 . Comparer $||Y||^2 ||P_0||^2$ et m_0 .
- **b**. On suppose seulement dans cette question que k = 1. L'entier n est supposé impair, n = 2q 1, et $y_i = 1$ si $0 \le i \le q 1$, $y_i = -1$ si $q \le i \le 2q 1$. Déterminer P_1 .

IV. Quatrième partie : détermination de m_k à l'aide d'une base orthogonale de $\mathbb{R}_n[X]$

Le but de cette question est de construire une suite unique de polynômes (B_0, B_1, \ldots, B_n) tels que :

- 1. $B_0 = 1$;
- 2. pour tout entier naturel $k \leq n$, la suite (B_0, B_1, \ldots, B_k) soit une base du sous-espace vectoriel $\mathbb{R}_k[X]$ telle que les polynômes B_i , pour $0 \leq i \leq k$, soient deux à deux orthogonaux;
- 3. pour tout $k \ge 1$, le coefficient du terme de plus haut degré du polynôme B_k soit égal à C_{2k}^k .
 - 1) Déterminer B_1 et B_2 .
- 2) Déterminer le polynôme B_k pour $1 \leq k \leq n$ à l'aide des polynômes X^k et Q_k , projection du monôme X^k sur $\mathbb{R}_{k-1}[X]$. Faire un croquis.

En déduire l'existence et l'unicité d'une base $\mathcal{B} = (B_0, B_1, \dots, B_n)$ de l'espace vectoriel $\mathbb{R}_n[X]$ vérifiant les propriétés 1, 2 et 3.

- 3) Démontrer, lorsque l'entier k est compris entre 1 et n, que le polynôme $B_k(n-X)$ est orthogonal au sous-espace vectoriel $\mathbb{R}_{k-1}[X]$. En déduire une relation simple entre $B_k(n-X)$ et B_k .
- 4) Déterminer les coordonnées du polynôme P_k (défini en III.3)) dans la base \mathcal{B} , k étant inférieur ou égal à n. Que vaut P_n ? En déduire, pour tout entier k compris entre 1 et n les relations :

$$P_k = P_{k-1} + \frac{(B_k|Y)}{\|B_k\|^2} B_k$$
 et $m_k = m_{k-1} - \frac{(B_k|Y)^2}{\|B_k\|^2}$.

V. Cinquième partie : étude de la famille (B_0, B_1, \dots, B_n)

- 1) Soit k un entier compris entre 2 et n et j un entier compris entre 0 et k-2; démontrer l'orthogonalité des polynômes XB_k et B_j .
- 2) En déduire, pour tout k entier compris entre 1 et n-1 l'existence de réels α_k , β_k et γ_k tels que :

$$XB_k = \alpha_k B_{k-1} + \beta_k B_k + \gamma_k B_{k+1}.$$

- 3) Déterminer à l'aide de la question IV.3) la valeur du réel β_k .
- 4) Que vaut γ_k ? En déduire la valeur du produit scalaire $(XB_k|B_{k+1})$ en fonction de l'entier k et du réel $||B_{k+1}||^2$.
 - 5) Déterminer le réel α_k en fonction de l'entier k et des réels $||B_{k-1}||^2$ et $||B_k||^2$. En déduire

$$B_{k+1} = \frac{2k+1}{k+1} \left(B_1 B_k - \frac{k}{2k-1} \frac{\|B_k\|^2}{\|B_{k-1}\|^2} B_{k-1} \right).$$